How to generate a random normal distribution of integers

Solution for How to generate a random normal distribution of integers
is Given Below:

How to generate a random integer as with np.random.randint(), but with a normal distribution around 0.

np.random.randint(-10, 10) returns integers with a discrete uniform distribution
np.random.normal(0, 0.1, 1) returns floats with a normal distribution

What I want is a kind of combination between the two functions.

One other way to get a discrete distribution that looks like the normal distribution is to draw from a multinomial distribution where the probabilities are calculated from a normal distribution.

import scipy.stats as ss
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-10, 11)
xU, xL = x + 0.5, x - 0.5 
prob = ss.norm.cdf(xU, scale = 3) - ss.norm.cdf(xL, scale = 3)
prob = prob / prob.sum() # normalize the probabilities so their sum is 1
nums = np.random.choice(x, size = 10000, p = prob)
plt.hist(nums, bins = len(x))

Here, np.random.choice picks an integer from [-10, 10]. The probability for selecting an element, say 0, is calculated by p(-0.5 < x < 0.5) where x is a normal random variable with mean zero and standard deviation 3. I chose a std. dev. of 3 because this way p(-10 < x < 10) is almost 1.

The result looks like this:

enter image description here

It may be possible to generate a similar distribution from a Truncated Normal Distribution that is rounded up to integers. Here’s an example with scipy’s truncnorm().

import numpy as np
from scipy.stats import truncnorm
import matplotlib.pyplot as plt

scale = 3.
range = 10
size = 100000

X = truncnorm(a=-range/scale, b=+range/scale, scale=scale).rvs(size=size)
X = X.round().astype(int)

Let’s see what it looks like

bins = 2 * range + 1
plt.hist(X, bins)

enter image description here

The accepted answer here works, but I tried Will Vousden’s solution and it works well too:

import numpy as np

# Generate Distribution:
randomNums = np.random.normal(scale=3, size=100000)
randomInts = np.round(randomNums)

# Plot:
axis = np.arange(start=min(randomInts), stop = max(randomInts) + 1)
plt.hist(randomInts, bins = axis)

Looks good no?

Here we start by getting values from the bell curve.

CODE:

#--------*---------*---------*---------*---------*---------*---------*---------*
# Desc: Discretize a normal distribution centered at 0
#--------*---------*---------*---------*---------*---------*---------*---------*

import sys
import random
from math import sqrt, pi
import numpy as np
import matplotlib.pyplot as plt

def gaussian(x, var):
    k1 = np.power(x, 2)
    k2 = -k1/(2*var)
    return (1./(sqrt(2. * pi * var))) * np.exp(k2)

#--------*---------*---------*---------*---------*---------*---------*---------#
while 1:#                          M A I N L I N E                             #
#--------*---------*---------*---------*---------*---------*---------*---------#
#                                  # probability density function
#                                  #   for discrete normal RV
    pdf_DGV = []
    pdf_DGW = []    
    var = 9
    tot = 0    
#                                  # create 'rough' gaussian
    for i in range(-var - 1, var + 2):
        if i ==  -var - 1:
            r_pdf = + gaussian(i, 9) + gaussian(i - 1, 9) + gaussian(i - 2, 9)
        elif i == var + 1:
            r_pdf = + gaussian(i, 9) + gaussian(i + 1, 9) + gaussian(i + 2, 9)
        else:
            r_pdf = gaussian(i, 9)
        tot = tot + r_pdf
        pdf_DGV.append(i)
        pdf_DGW.append(r_pdf)
        print(i, r_pdf)
#                                  # amusing how close tot is to 1!
    print('nRough total=", tot)
#                                  # no need to normalize with Python 3.6,
#                                  #   but can"t help ourselves
    for i in range(0,len(pdf_DGW)):
        pdf_DGW[i] = pdf_DGW[i]/tot
#                                  # print out pdf weights
#                                  #   for out discrte gaussian
    print('npdf:n')
    print(pdf_DGW)

#                                  # plot random variable action
    rv_samples = random.choices(pdf_DGV, pdf_DGW, k=10000)
    plt.hist(rv_samples, bins = 100)
    plt.show()
    sys.exit()

OUTPUT:

-10 0.0007187932912256041
-9 0.001477282803979336
-8 0.003798662007932481
-7 0.008740629697903166
-6 0.017996988837729353
-5 0.03315904626424957
-4 0.05467002489199788
-3 0.0806569081730478
-2 0.10648266850745075
-1 0.12579440923099774
0 0.1329807601338109
1 0.12579440923099774
2 0.10648266850745075
3 0.0806569081730478
4 0.05467002489199788
5 0.03315904626424957
6 0.017996988837729353
7 0.008740629697903166
8 0.003798662007932481
9 0.001477282803979336
10 0.0007187932912256041

Rough total =  0.9999715875468381

pdf:

[0.000718813714486599, 0.0014773247784004072, 0.003798769940305483, 0.008740878047691289, 0.017997500190860556, 0.033159988420867426, 0.05467157824565407, 0.08065919989878699, 0.10648569402724471, 0.12579798346031068, 0.13298453855078374, 0.12579798346031068, 0.10648569402724471, 0.08065919989878699, 0.05467157824565407, 0.033159988420867426, 0.017997500190860556, 0.008740878047691289, 0.003798769940305483, 0.0014773247784004072, 0.000718813714486599]

enter image description here

This version is mathematically not correct (because you crop the bell) but will do the job quick and easily understandable if preciseness is not needed that much:

def draw_random_normal_int(low:int, high:int):

    # generate a random normal number (float)
    normal = np.random.normal(loc=0, scale=1, size=1)

    # clip to -3, 3 (where the bell with mean 0 and std 1 is very close to zero
    normal = -3 if normal < -3 else normal
    normal = 3 if normal > 3 else normal

    # scale range of 6 (-3..3) to range of low-high
    scaling_factor = (high-low) / 6
    normal_scaled = normal * scaling_factor

    # center around mean of range of low high
    normal_scaled += low + (high-low)/2

    # then round and return
    return np.round(normal_scaled)

Drawing 100000 numbers results in this histogramm:
enter image description here